Interacted QTL Mapping in Partial NCII Design Provides Evidences for Breeding by Design

نویسندگان

  • Su Hong Bu
  • Zhao Xinwang
  • Can Yi
  • Jia Wen
  • Tu Jinxing
  • Yuan Ming Zhang
چکیده

The utilization of heterosis in rice, maize and rapeseed has revolutionized crop production. Although elite hybrid cultivars are mainly derived from the F1 crosses between two groups of parents, named NCII mating design, little has been known about the methodology of how interacted effects influence quantitative trait performance in the population. To bridge genetic analysis with hybrid breeding, here we integrated an interacted QTL mapping approach with breeding by design in partial NCII mating design. All the potential main and interacted effects were included in one full model. If the number of the effects is huge, bulked segregant analysis were used to test which effects were associated with the trait. All the selected effects were further shrunk by empirical Bayesian, so significant effects could be identified. A series of Monte Carlo simulations was performed to validate the new method. Furthermore, all the significant effects were used to calculate genotypic values of all the missing F1 hybrids, and all these F1 phenotypic or genotypic values were used to predict elite parents and parental combinations. Finally, the new method was adopted to dissect the genetic foundation of oil content in 441 rapeseed parents and 284 F1 hybrids. As a result, 8 main-effect QTL and 37 interacted QTL were found and used to predict 10 elite restorer lines, 10 elite sterile lines and 10 elite parental crosses. Similar results across various methods and in previous studies and a high correlation coefficient (0.76) between the predicted and observed phenotypes validated the proposed method in this study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correction: Interacted QTL Mapping in Partial NCII Design Provides Evidences for Breeding by Design

The first and last names for the second and the fifth authors were inadvertently switched. The first name appears as the last name and the last name appears as the first name. Zhao Xinwang should be Xinwang Zhao and Tu Jinxing should be Jinxing Tu. The correct citation is: Bu SH, Zhao X, Yi C, Wen J, Tu J, Zhang YM (2015) Interacted QTL Mapping in Partial NCII Design Provides Evidences for Bree...

متن کامل

Mapping QTL with additive effects and additive x additive epistatic interactions for plant architecture in wheat (Triticum aestivum L.)

In bread wheat (Triticum aestivum L.), crop height is an important determinant of agronomic performance. To map QTLs with additive effects and additive×additive epistatic interactions, 148 recombinant inbred lines and their parents, (‘YecoraRojo’ and Iranian landrace (No. #49)) were evaluated under normal and water deficit conditions. The experiments were carried out on research farms of Mahaba...

متن کامل

Identification of QTLs for grain yield and some agro-morphological traits in sunflower (Helianthus annuus L.) using SSR and SNP markers

Many agriculturally important traits are complex, affected by many genes and the environment. Quantitative trait loci (QTL) mapping is a key tool for studying the genetic structure of complex traits in plants. In the present study QTLs associated with yield and agronomical traits such as leaf number, leaf length, leaf width, plant height, stem and head diameter were identified by using 70 recom...

متن کامل

Genome-wide genetic dissection of germplasm resources and implications for breeding by design in soybean

"Breeding by Design" as a concept described by Peleman and van der Voort aims to bring together superior alleles for all genes of agronomic importance from potential genetic resources. This might be achievable through high-resolution allele detection based on precise QTL (quantitative trait locus/loci) mapping of potential parental resources. The present paper reviews the works at the Chinese N...

متن کامل

Genetic dissection of heterosis using epistatic association mapping in a partial NCII mating design

Heterosis refers to the phenomenon in which an F1 hybrid exhibits enhanced growth or agronomic performance. However, previous theoretical studies on heterosis have been based on bi-parental segregating populations instead of F1 hybrids. To understand the genetic basis of heterosis, here we used a subset of F1 hybrids, named a partial North Carolina II design, to perform association mapping for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015